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Modular Arithmetic and Cryptography 
  
 There are many situations where information must be kept secure or secret. Secret codes 
have been a part of political intrigue for as long as there have been competing groups of people. 
Information security is also important in business, industry, government, and in private life, 
particularly in online settings. The mathematics used to keep information secure in all these 
situations is called cryptography.  
 
 Cryptography is the study of mathematical techniques used to provide information 
security.  A fundamental aspect of cryptography is confidentiality. Confidentiality is important, 
for example, when you send a credit card number over the Internet, or when your government 
sends a secret message to an embassy abroad. Confidential information is transmitted and 
received as illustrated in the diagram below.  
 

 
Figure 1: 

A cryptosystem uses keys to convert plaintext to ciphertext and then back to the original plaintext 
  
 The original plaintext message is encrypted. The resulting ciphertext message is 
decrypted upon receipt. A key is used to encrypt and decrypt the information. A cryptosystem is 
the overall method of encrypting and decrypting using keys.  
  
 There are two basic types of cryptosystems. In a symmetric-key cryptosystem, the same 
key is used to encrypt and decrypt. (The exact same key may not be used, but at least it is easy to 
calculate the encryption key from the decryption key, and vice versa.) Thus, the security of a 
symmetric-key cryptosystem depends on the secrecy of the key. In contrast, in a public-key 
cryptosystem, different keys are used for encryption and decryption. One key is made public, 
and the other is kept secret. Since symmetric-key systems are faster, while public-key systems 
are more secure, hybrid cryptosystems are often used, in which the same key is used to encrypt 
and decrypt but the key is transmitted from sender to receiver using a public-key system.  
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 You often see cryptosystems in action when you use the Internet. For example, you might 
see a warning message such as on the left in Figure 2 when you are entering personal 
information on a website. When shopping online, you know that cryptography is being used to 
keep your transaction secure when you see that the website address begins with “https” instead 
of “http,” as on the right in Figure 2. This indicates that the Secure Sockets Layer (SSL) protocol 
is being used to securely transfer information. According to the Apple OS X Help guide, “Web 
browsers and many websites use the SSL protocol to transfer confidential user information, such 
as credit card numbers. SSL uses a public and private key encryption system” (OS X 10.5.6 
Help, “About Secure Sockets Layer”). 
 

 

 

 

  

Figure 2: Examples of cryptography in action on the Internet 
  
 Public-key cryptography was developed  in the mid-1970s by Whitfield Diffie and Martin 
Hellman at Stanford University and Ronald L. Rivest, Adi Shamir, and Leonard Adleman at the 
Massachusetts Institute of Technology. (It appears that James Ellis, Clifford Cocks, and Malcolm 
Williamson developed the idea earlier as part of secret work for a British intelligence service, but 
this was not made public until the 1990s.) Public-key cryptography is one of the most significant  
developments in the history of cryptography, and it is still widely used today. 
  
 Consider the RSA public-key cryptosystem (with initials in honor of the MIT 
developers). This system is based on the fact that it is relatively easy to multiply two large 
numbers, but difficult to factor a large composite number. Messages are first converted to 
numbers (e.g., A becomes 1, B becomes 2, etc.) and then the numbers are transformed using 
modular arithmetic. The steps of this procedure are described on the next page.   
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 The keys for the RSA public-key cryptosystem are numbers constructed by the receiver. 
The numbers are constructed using prime numbers and modular arithmetic. The general strategy 
is shown in the diagram below. The numbers n and e are used for encrypting. They comprise the 
public key, known to everyone. The numbers p, q, and d are used for decrypting.  They comprise 
the private key, known only to the receiver.  The arrows in the diagram show which numbers 
are used to construct which.  The procedure below the diagram explains how to encrypt and 
decrypt messages.  

RSA Cryptosystem 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Receiver Constructs the Keys: 
• Choose two prime numbers, p and q. 
• Compute  n = pq. 
• Compute  r = (p – 1)(q – 1). 
• Choose a number e (for encrypt) such that e has a multiplicative inverse in Zr. 
• d (for decrypt) is the multiplicative inverse of e in Zr. 
• The receiver publishes e and n in a public directory.  This is the receiver’s 

public encryption key. 
• The receiver keeps d secret, along with p and q.  This is the private decryption 

key. 

Encrypting: 
• Convert the plaintext message to numbers, each of which is less than n. 
• Raise each number to the power e.  Reduce mod n. 

Decrypting: 
• Raise each ciphertext number to the power d.  Reduce mod n. 
• Convert from numbers to letters. 

  
 Before investigating this method further, we need to understand some of the 
mathematical ideas involved in the above description. In particular, we must figure out what the 
notation Zr and mod n mean. These are part of an area of mathematics called modular arithmetic.  

prime numbers: 
p and q 

n 

d 

e 

public key 
(encrypt) 

private key 
(decrypt) 
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Modular Arithmetic 

 In the following problems you will investigate modular arithmetic. Your goal, by the end of 
the lesson, is to answer this question: 

What is modular arithmetic, how does it work, 
and how does it compare to standard arithmetic with real numbers?  

1. Suppose that as part of a secret code you will substitute numbers for letters. You will also 
need a number to represent a space. Use the following translation scheme: 

  0 → space 
  1 → A 
  2 → B 
  3 → C 
  : 
  26 → Z 

 So you have 27 characters, numbered from 0 to 26.  

Think about how you could convert numbers larger than 26 into letters, by starting to count 
over after you reach 26. For example, the number 28 translates to “A”. 

(a) Translate the numbers 29, 52, and 119 into letters. Compare your translation with those 
of some other students. Resolve any differences. 

 

 

 

 

(b) Verify that 31 and 58 both translate to the letter D. Find two other numbers that 
translate to D. Describe any pattern you notice for all numbers that translate to D.  

 

 

 

 

(c) Translate –2 into a character. Translate –10. Describe how you do the translation. 
Compare your translation with those of some other students. Resolve any differences. 
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2. To translate numbers into characters in Problem 1, you first need to convert any given integer 
into an integer between 0 and 26. This is an example of what is called modular arithmetic. In 
particular, you are using a mod 27 system, since you are limited to the 27 integers between 0 
and 26:  0, 1, 2, 3, ..., 26. It is possible to do arithmetic in this system. For example,  
2 + 3 = 5 in mod 27, just as in regular arithmetic.   

(a) Perform the following computations in mod 27.   

• Explain why  25 + 9 = 7 in mod 27. 

 

 

• 18 + 14 = ___ in mod 27 

 

 

• 3 !  25 = ___ in mod 27 

 

 

• 72 = ___ in mod 27 

 

 

• –5 = ___ in mod 27 

 

 

(b) Compare your results and explanations with those of some other classmates. Make sure 
everyone is getting the same answers. Resolve any differences. 
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3. Now consider some other modular systems. 

(a) Consider a mod 31 system. Do the same computations as in Part (a) of Problem 2, using 
mod 31. Record your answers next to the mod 27 answers in Problem 2. 

 

(b) Consider mod 15. Would you say that 23 and 38 are “equivalent mod 15”? Why? 

 

 

 

4. The definition of “equivalent mod n” is as follows. 

Integers a and b are equivalent  mod n 
if and only if a and b have the same remainder upon division by n. 

 A “three-line equal sign” is used to denote equivalence mod n.  Thus,  
a ≡ b mod n  is read as, “a is equivalent to b mod n.” 

(a) Use the definition above to show that  23 ≡ 8 mod 5. 

 

 

(b) Use the definition above to show that  76 ≡ 4 mod 9. 

 

 

(c) Use the definition above to show that  –3 ≡ 24 mod 27. 

 

 

(d) Find four integers that are equivalent to  2 mod 7. 

 

 

(e) Can you think of an equivalent yet different definition of “equivalent mod n”? Perhaps 
using subtraction? 
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5. To reduce an integer mod n means to replace the integer by its remainder upon division by 
n. For example, if you reduce  58 mod 7  you get 2, since dividing 58 by 7 leaves a remainder 
of 2. 

(a) Reduce each of the integers below, using the indicated modular system. 

• 48 mod 5 

 

 

• 397 mod 10 

 

 

• –24 mod 7 

 

 

 

(b) What are all the possible results when you reduce integers mod 5? How about when you 
reduce mod 12? How about mod 348? How about mod n? Explain. 

 

 

 

 

 

(c) Suppose two integers reduce mod n to the same number. Are these two integers 
equivalent mod n? Prove your answer. 
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Integers mod n:  Zn  
You found in Part (b) of Problem 5 above that every integer can be reduced mod 5 to 0, 1, 2, 3, 
or 4, since these are the possible remainders when you divide an integer by 5. You also found 
that, in general, every integer can be reduced mod n to an integer between 0 and (n – 1), 
inclusive. Because of this, we can define a new set of numbers, called integers mod n: 

Zn = {0, 1, 2, ..., n – 1}. 

Each “number” in Zn really represents all the integers that reduce to it mod n. Even so, you can 
think of the elements of Zn as the numbers 0, 1, 2, ..., n – 1. Arithmetic in Zn is the same 
arithmetic mod n that you have been using above.   

Properties of Zn  The modular arithmetic in Zn has many interesting properties. Some 
properties are similar to properties of regular arithmetic with real numbers, while other properties 
are different.   

6. Think about additive inverses. 

(a) Every real number x has an additive inverse, which when added to x yields 0. Find the 

additive inverse of these real numbers:  5,  
3
4  , and –1.5. 

 

 
(b). Check to see if the additive inverse property is true in Zn. 

• What is the additive inverse of 6 in Z10? 

 
• What is the additive inverse of 3 in Z8? 

 
• What is the additive inverse of m in Zn? 

 
• Do you think every number in Zn has an additive inverse? Explain. 
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7. Think about multiplicative inverses. 

(a) Every nonzero real number x has a multiplicative inverse, which when multiplied by x 

yields 1. Find the multiplicative inverse of 5,  
3
4  , and –1.5. 

 
(b) Check to see if the multiplicative inverse property is true in Zn.  

Consider Z7. 

• Find a number in Z7 that you can multiply by 3 to get  1 mod 7.  Such a number is 
the multiplicative inverse of 3 in Z7. 

 
• For each nonzero number in Z7, try to find its multiplicative inverse. 

 

 
(c) Consider Z6. 

• For each number in Z6, try to find its multiplicative inverse. (Remember that you 
multiply in Z6 using mod 6 modular arithmetic.)  

 

 
• State any patterns you notice concerning which numbers in Z6 have a multiplicative 

inverse and which do not. 

 

 
(d) Consider Z9. 

• For each number in Z9, try to find its multiplicative inverse. (Remember that you 
multiply in Z9 using mod 9 modular arithmetic.)  

 

 
• State any patterns you notice concerning which numbers in Z9 have a multiplicative 

inverse and which do not. 

 

(e) Does every number in Zn have a multiplicative inverse, for every n? Explain. 
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8. You discovered in Problem 7 that not all numbers in a given modular system have a 
multiplicative inverse. Think about when multiplicative inverses exist in Zn.  

(a) Make some conjectures about which numbers have multiplicative inverses in Zn, either 
for a general n or for particular values of n. For each conjecture, try to prove it or 
disprove it. (You can disprove it by finding a counterexample.)  

 

 

 

 

 

 

 

 

 

After trying some of your own conjectures, complete and prove the following three 
statements. 
(b) When n is ________________, then every nonzero integer in Zn has a multiplicative 

inverse. 

 

 

 

(c) If n and m have a particular relationship to each other, then m does not have a 
multiplicative inverse in Zn. What is that relationship? 

 

 

 
(d) m has a multiplicative inverse in Zn if and only if _____________________________. 
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9. Summarize  Review and practice what you have learned about the number system Zn 
and the associated operations of addition and multiplication mod n, as you work through 
the following problems.  

(a) 8 and 5 can be considered elements in many different modular systems. Think 
about the arithmetic of the various modular systems as you complete the 
following: 
• 8 + 5 = __, in Z9 

• 8 + 5 = __, in Z27 

• 8 !  5 = __, in Z9 

• 8 !  5 = __, in Z27 

• 85 = __, in Z9 

• Find the additive inverse of 8 in Z12. 

• Find the multiplicative inverse of 5 in Z11. 

(b) Consider a mod 8 system. 

• Describe how to determine if two integers are equivalent mod 8. 

 

• Find three integers that are equivalent to  –6 mod 8. 

 

• Reduce 346 mod 8. 

 

(c) Give a general explanation or description of the following. 

• Two integers are equivalent mod n. 

 

• Reduce an integer mod n. 

 
• Zn, and the properties of addition and multiplication in Zn 

 

(d) Go back and examine the description of the RSA cryptosystem on page 3. Identify the 
places where modular arithmetic is used. 


